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Chapter 2  Wave Equation 
 

2.1 Scalar Wave Equation 
 
In this lecture, we discuss principally on electromagnetic wave and elastic wave, because they are very important 
in many applications of measurement. These two waves are physically different, but mathematically they have a 
great similarity. It is the same for most of other wave phenomena, when it has linearity.  
 
Mathematically, all the wave phenomena can be described by wave equation. For example, as the simplest 
example, scalar one-dimensional wave equation is represented as: 
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where u x t( , )  denotes a physical parameter, which is a function of time t and one-dimensional position x , 

∇2 is the Laplacian operator to a scalar function and v is a constant value. The solution to (2..1.2) can be easily 

found and is given as: 

u x t u x vt u x vt( , ) ( ) ( )= − + ++ −   (2.1.3) 

where u+ ( ) and u− ( )  can be any scalar functions. The fact that the  u+ ( ) and u− ( ) are solution to (2.1.2) 

can be proven by putting (2.1.3) into (2.1.2). It should be noted that u1( , )x t and u x t2( , )  denote physical 

quantities, which propagate to the positive and negative x-directions at the constant velocity of v. 
 
 

When some boundary conditions are implied to the wave equation, u+ ( ) and u− ( )  cannot be arbitrary 

functions any more, and have to be determined by the boundary conditions. This is the case for the most physical 
wave phenomena. The boundary conditions include the condition of the medium, in which the wave propagate 
and the method of excitation of the wave motion. 
 
 

If the u1( , )x t and u x t2( , )  are the solution to the wave equation, which satisfies the boundary conditions, then 

their sum: 

u(x, t) = u1( , ) ( , )x t u x t+ 2     (2.1.4) 

is also the solution to the wave equation. Using the liner properties of the quantities can prove this fact. 
 
2.2 Time harmonic solution to the wave equation 
 
Now we consider solving the wave equation for time-harmonic quantities. Now we assume a phaser notation of 
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u x t( , )  as U x( )  and simply write as U . Substituting U  and using the conditions defined by (1.2.3) and 

(1.2.4), we have 
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Assuming U x e x( ) = λ  as a solution, where λ  is an unknown constant value, and substituting U x e x( ) = λ  

into (2.2.1) we have: 
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This equation determines the unknown value λ . (2.2.2) is refereed as a dispersion equation. And  
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is a wave number. By using the wave number, the time-harmonic solution to the wave equation (2.2.1) is given by: 
 

  U x U e U ejkx jkx( ) = +− +
1 2     (2.2.4) 

where U1  and U2  are constant values, which will be determined by the boundary conditions. 

 
 
2.3  The diffusion equation 
 
In order to compare the wave equation to another differential equation, which is governing the transfer phenomena 
in physics, now we consider a heat flow along an insulated bar. Temperature at each position x and time t is 

u x t( , ) . Define the linear density of the material be ρ  and the specific heat of the material: be c then the 

amount of heat energy in the portion of the bar in a x b≤ ≤  is given as: 
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The rate of change of the heat energy is given by: 
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and we have: 
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where F x t( , ) is the rate at which heat energy passes the point. The above equation can be rewritten as: 
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and  
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have to be satisfied. The heat flux should depend on the spatial rate of change of the temperature. This is 
expressed in Fourier’s law of cooling: 
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where κ  is the heat conductivity. Substituting (6) into (5) we have 
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when the material constants are independent on the position x, (7) yields: 
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where k c
=

ρ
κ

 This is a one-dimensional heat equation.  

 
The analogue of Fourier’s law of cooling is known as Fick’s law of diffusion which states that the flux is 
proportional to the spatial ratio of change of the concentration, and that dye moves from region of higher 
concentration to region of lower concentration This leads to diffusion equation. Compare (2.3.8) with (2.1.2), i.e., 
wave equation. 
 


